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Collision efficiencies are determined for two surfactant-covered spherical drops in the limit of nearly uni-
form surface coverage in thermocapillary motion. The problem is linearized by assuming dilute surfac-
tant concentration, with the effect of surfactant controlled by a single retardation parameter A. The
mobility function LA along the drops’ line of centers is much less than zero over a wide range of param-
eters, so that the smaller drop can move faster than the larger one at moderate to large separations. At
surface Péclet numbers less than 10, the incompressible surfactant model agrees well with solution of
the full convective-diffusion equation for the minimum separation between drops. With the exception
of non-conducting drops, the collision efficiencies become zero at moderate values of A. A model system
of contaminated ethyl salicylate (ES) drops in diethylene glycol (DEG) is studied in thermocapillary
motion. Population dynamics simulations confirm the coalescence-inhibiting effect of incompressible
surfactant on the evolution of the ES/DEG drop-size distribution.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

It is a general observation concerning drops that it is difficult to
keep their interfaces free of surfactant (Subramanian and Balasubr-
amaniam, 2001). For the case of thermocapillary motion, where the
driving force for motion is located on the drop surface, the conse-
quences of this truism are significant: Drop motion can be severely
retarded or even completely arrested. In the last several decades,
since Young et al. (1959) first worked out the details of a bubble
translating due to an applied temperature gradient, thermocapil-
lary motion has been an ongoing research topic for a wide variety
of potential applications. The more interesting of these include use
in the removal of small bubbles from glass melts (Ramos, 1997),
microfluidic devices (Darhuber and Troian, 2005), materials pro-
cessing (Prinz and Romero, 1992) and extraterrestrial environ-
ments (Brower and Sadeh, 2002).

A single, spherical drop with surfactant has been studied
analytically in various limits, including stagnant cap (Kim and
Subramanian, 1989a) and general surface distribution with the
two-dimensional ideal gas equation of state (Kim and
Subramanian, 1989b). Non-linear effects were considered by Chen
and Stebe (1997), while Nadim and Borhan (1989) treated small
deformation. Experiments have also been conducted on a contam-
inated drop moving in an applied temperature gradient (Barton
and Subramanian, 1989; Chen et al., 1997; Nallani and
ll rights reserved.
Subramanian, 1993). The case of Nallani and Subramanian (1993)
is an illustration of this paper’s initial remark, since the authors
explained their results on what were thought to be clean drops
in terms of the accidental presence of surfactant.

To my knowledge, the only work which considers interactions
of two drops in thermocapillary motion with surfactant is Rother
(2007). While this initial look at surfactant effects on Marangoni-
induced motion of more than one drop provides results for non-lin-
ear models of the surface equation of state, the boundary-integral
method employed there proved computationally intensive and
precluded wide investigation into the already large parameter
space. Moreover, since noticeable drop deformation has not been
observed in thermocapillary motion (Chen and Stebe, 1997), a bet-
ter technique might be chosen to approach the problem.

To provide a more fundamental understanding of surfactant
effects on thermocapillary motion, we treat one limit of the results
presented in Rother (2007), that of an incompressible surfactant
film (Frumkin and Levich, 1947; Levich, 1962). Surfactant coverage
is called ‘incompressible’ based on analogy with incompressible
flow, where an infinitesimal change in density corresponds to a
large pressure variation. In our case, finite differences in interfacial
tension occur as a result of very small changes in surfactant con-
centration. In this way, the limit of incompressible surfactant is
the same as the limit of nearly uniform surfactant surface coverage.
As shown by the scaling arguments of Blawzdziewicz et al. (1999),
incompressible surfactant has physical importance, especially for
small drops. The advantages of studying nearly uniform surfactant
coverage include reduction of the parameter space by one, since
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Fig. 1. Definition sketch for two drops covered with incompressible surfactant
interacting due to an applied temperature gradient rT.
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elasticity and the surface Péclet number are combined into a single
retardation parameter, and ease of analysis, since the problem
remains linear. In the case of varying temperature, this lineariza-
tion is facilitated by the fact that significant gradients in interfacial
tension can occur without large gradients in the interfacial concen-
tration of surfactant.

Because the incompressible surfactant problem avoids the diffi-
culties associated with non-linearities, drop trajectories may be
decomposed into motion parallel and normal to the drops’ line of
centers. Analytical methods may be used to determine mobility
functions, and collision efficiencies may be calculated for use in
population dynamics simulations to predict the behavior of dilute
dispersions of surfactant-covered drops in thermocapillary motion.
For the case of two clean drops, thermocapillary collision efficien-
cies have been found (Zhang and Davis, 1992) using mobility func-
tions determined by bispherical coordinates along the line of
centers (Keh and Chen, 1990) and method of reflections perpendic-
ular to the line of centers (Anderson, 1985). For clean bubbles mov-
ing in an applied temperature gradient, Satrape (1992) employed
multipole techniques to determine collision efficiencies. Subse-
quently, Rother and Davis (1999) generalized the multipole results
for motion perpendicular to the drops’ line of centers to arbitrary
drop-to-medium viscosity ratio. Population dynamics are well
established for uncontaminated bubbles and drops in thermocapil-
lary motion (Rogers and Davis, 1990; Wang and Davis, 1993;
Satrape, 1992; Rother and Davis, 1999).

Nearly uniform surfactant coverage has been studied in binary
interactions under a variety of flows. Blawzdziewicz et al. (1999)
considered two contaminated bubbles in Brownian motion and lin-
ear flows. Ramirez et al. (2000) treated flotation of a bubble cov-
ered with incompressible surfactant and a much smaller particle
by using bispherical coordinates for motion along the line of cen-
ters and multipole techniques for normal motion. Similarly, Rother
and Davis (2004) generalized the results of Ramirez et al. (2000) to
gravitational interactions of two drops with nearly uniform surfac-
tant coverage to arbitrary viscosity ratio, also using both bispheri-
cal coordinates and multipole techniques. The experimental work
of Hudson et al. (2003) on two contaminated drops in shear flow
confirmed the usefulness of the theoretical results of Bla-
wzdziewicz et al. (1999), probed the limits of the incompressible
model, and made modifications for the more general surfactant-
coverage case.

Herein, we investigate the limit of nearly uniform surfactant
coverage in the case of two spherical drops in thermocapillary mo-
tion. The assumptions behind the model, problem formulation and
method of solution are the subject of Section 2. Results and discus-
sion are found in Section 3, and concluding remarks in Section 4.
2. Problem statement and method of solution

Fig. 1 depicts schematically the interaction due to a constant
applied temperature gradient rT1 of two drops of one liquid im-
mersed in a second immiscible liquid under conditions such that
inertia and convective transport of energy are negligible, i.e., when
the Reynolds number Re ¼ qeV ð0Þ2 a2=le and Marangoni number
Ma ¼ a2V ð0Þ2 =DT for the larger drop are small. The quantities qe

and le are the surrounding liquid density and viscosity, respec-
tively, while qd and ld are the drop density and viscosity. In addi-
tion, the drop and matrix thermal conductivities are kd and ke, with
thermal conductivity ratio k̂ ¼ kd=ke. Besides the viscosity ratio
l̂ ¼ ld=le and thermal conductivity ratio, a third dimensionless
quantity is the drop-size ratio k ¼ a1=a2, where a1 and a2 are the
smaller and larger drop radii, respectively. The isolated larger drop
velocity is V ð0Þ2 , which will be defined below, and the matrix liquid
thermal diffusivity is DT .
The drops are covered with a bulk-insoluble, non-ionic surfac-
tant film, and the interfacial tension r� is assumed to depend on
both absolute temperature T� and surfactant concentration C�

linearly:

r� ¼ r0 þ
dr
dT
ðT� � T0Þ þ

dr
dC

C�; ð1Þ

where r0 is the interfacial tension at T0 and without surfactant. The
gradient of the interfacial tension with respect to temperature is de-
fined through b ¼ �dr=dT , and dr=dC ¼ �RT� for the two-dimen-
sional ideal gas equation of state, for example, where R is the gas
constant. Because the temperature difference drives the flow, the
problem is not isothermal, and Eq. (1) is nonlinear.

To obtain the tangential stress jump across the drop interfaces,
the surface equation of state, Eq. (1), is combined with the trans-
port equation for insoluble surfactant at steady state (Frumkin
and Levich, 1947; Levich, 1962),

rs � ðC�v�t � DsrsC
�Þ ¼ 0; ð2Þ

where rs is the surface gradient operator, v�t is the fluid tangential
velocity at the drop surface, and Ds is the surfactant surface diffusiv-
ity. In dimensionless form, after assuming C� is nearly constant, the
result is

st � st;i ¼ Avt þ
ðk̂þ 2Þð3l̂þ 2þ AÞ

2
ðrsT þKðCrsT þ TrsCÞÞ;

ð3Þ

where the stress jump s�t � s�t;i has been scaled with leV ð0Þ2 =a2 and
the interfacial velocity with V ð0Þ2 . The dimensionless temperature
and surfactant concentration are

C ¼ C�

C0
; T ¼ T� � T0

a2jrT1j
: ð4Þ

The first quantity on the right of Eq. (3) is the retardation
parameter A, which is a combination of the elasticity E and surface
Péclet number Pes:

A ¼ E Pes ¼
RT0C0a2

leDs
: ð5Þ

It is assumed in our analysis that both drops have the same
average surfactant surface concentration, as is common in practice,
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so that the smaller drop has retardation parameter kA, when the
larger drop has retardation parameter A. The significance of the
surfactant retardation parameter A has been touched upon in
Blawzdziewicz et al. (1999) and Ramirez et al. (2000). We note
here that at small A the surfactant has little effect on the motion
along the drop interfaces, while at large A Marangoni stresses
significantly retard interfacial motion. Also, the limit A ¼ 0
corresponds to a clean interface, and as A!1, the surfactant is
non-diffusing.

In isothermal flows, Eq. (3) is already linear. To eliminate the
non-linear terms from Eq. (3), it will be assumed that the parame-
ter K ¼ RC0=b is much less than 1. As discussed by Subramanian
and Balasubramaniam (2001), this simplification is equivalent to
dilute surfactant surface concentration. Because Eq. (3) requires
low surfactant concentrations, the two-dimensional ideal gas mod-
el is used for the dependence of interfacial tension on C. With K�
1, Eq. (3) becomes much more tractable, and the problem can be
tackled by standard techniques.

In general, analytical solutions for the isolated spherical drop
velocity are not possible for arbitrary surfactant surface coverage
in Stokes flow. The case of a contaminated drop in thermocapillary
motion in the regime of nearly uniform surfactant coverage is an
exception, where the assumption of incompressible surfactant
has been made in the derivation of the tangential stress, Eq. (3).
Here, the velocity of the larger drop V ð0Þ2 can be derived from Levich
(1962):

V ð0Þ2 ¼
2

ð3l̂þ 2þ AÞðk̂þ 2Þ
brT1

le
a2: ð6Þ

As discussed in both Blawzdziewicz et al. (1999) and Ramirez
et al. (2000), the case of nearly uniform surface coverage occurs
when either the surface Péclet number is small: Pes ¼
V ð0Þ2 a2=Ds � 1, or the elasticity E is large: E ¼ RT0C0=leV ð0Þ2 � 1.
The final conditions of our analysis are that the drops remain
spherical and that Brownian motion be negligible. The former
restriction requires that some form of the capillary number be
small (see Eq. (19) below), and the latter that the Péclet number
based on the drop diffusivity be large. It should be noted that we
are capable of handling Brownian motion in conjunction with ther-
mocapillary motion, as was done in the case of Rother and Davis
(2004) for combined Brownian and buoyancy-driven motion. But
for the sake of simplicity, we have chosen to ignore very small
drops. Blawzdziewicz et al. (1999) concluded that, for small capil-
lary number, an incompressible surfactant film is common.

The goal of the current work is to find the collision efficiency,
which is the ratio of the collision rate in the presence of hydrody-
namic forces and surfactant to the collision rate for non-interacting
drops with clean interfaces, as a function of k; k̂; l̂ and A. This task
requires solution of the Stokes equations for the flow fields inside
and outside the spherical drops, subject to the tangential stress
boundary conditions, Eq. (3). Such an analysis has been performed
previously for surfactant-free drops in buoyancy and Brownian mo-
tion (Zhang and Davis, 1991) and thermocapillary motion (Zhang
and Davis, 1992). Thus, the interested reader is referred to Zhang
and Davis (1991, 1992) for derivation of the expressions for the
collision efficiency. Only the final equations are presented here.

Since the Stokes equations are linear, the flow can be decom-
posed into components parallel and normal to the drops’ line of
centers, resulting in the following expression for the velocity of
drop 2 relative to drop 1:

V12ðrÞ ¼ V ð0Þ12 �
rr
r2 LAðsÞ þ I � rr

r2

� �
MAðsÞ

h i

� Dð0Þ12

jT
rr
r2 GAðsÞ þ I � rr

r2

� �
HAðsÞ

h i
� $ðU12Þ; ð7Þ
where r is the vector from the center of drop 2 to the center of drop
1, I is the unit second-order tensor, s ¼ 2r=ða1 þ a2Þ is the center-to-
center distance made dimensionless by the average drop radius, Dð0Þ12

is the relative diffusivity for two widely separated drops, j is
Boltzmann’s constant, U12 is the interparticle potential, V ð0Þ12 is the
relative velocity defined as V ð0Þ2 � V ð0Þ1 , and LA;MA;GA, and HA are
two-sphere relative mobility functions. The mobility functions LA

and MA depend on k; l̂; k̂;A and s, and they are unchanged when k
is replaced with k�1 (with the caveat that the value of the retarda-
tion parameter for the smaller drop is kA when that for the larger
drop is A). Expressions for the unretarded interparticle potential
can be found in Zhang and Davis (1991). These expressions are
based on van der Waals attractions; ionic or electrostatic repulsion
is neglected in the present work. Steric effects are also ignored.

The drops’ relative velocity and diffusivity when widely sepa-
rated and subjected to the effects of nearly uniform surfactant cov-
erage are deduced from Levich (1962):

V ð0Þ12 ¼
2

ðk̂þ 2Þ
1

3l̂þ 2þ A
� k

3l̂þ 2þ kA

� �
brT1

le
a2; ð8Þ

Dð0Þ12 ¼
3l̂þ 3þ A
3l̂þ 2þ A

þ 3l̂þ 3þ kA
3l̂þ 2þ kA

1
k

� �
jT�

6plea2
: ð9Þ

An additional quantity that arises in non-dimensionalizing U12

is the interaction parameter Q 12:

Q12 ¼
6pð1þkÞ
ðk̂þ2Þ

1
3l̂þ2þA� k

3l̂þ2þkA

� �
3l̂þ3þA
3l̂þ2þAþ

3l̂þ3þkA
3l̂þ2þkA

1
k

� � bjrT1ja3
2

AH
; ð10Þ

where AH is the Hamaker constant. The interparticle force parame-
ter Q12 represents the ratio of the thermocapillary driving force to
molecular attraction. The larger the value of Q12, the weaker van
der Waals forces are.

The method used to solve for the mobility functions is similar to
that used in Rother and Davis (2004), Ramirez et al. (2000), and
Zinchenko (1980): Bispherical coordinates are employed for LA

along the line of centers and multipole techniques for MA perpen-
dicular to the line of centers. Relevant details can be found in
Appendices A and B. The mobility functions GA and HA were previ-
ously determined for bubbles by Blawzdziewicz et al. (1999) and
arbitrary viscosity ratio by Rother and Davis (2004).

Once the mobility functions are known, it is possible to calcu-
late the collision efficiency E12 via a trajectory analysis for thermo-
capillary motion. For an arbitrary trajectory in an applied
temperature gradient, as in Fig. 1, the drops have an initial horizon-
tal offset d1 when well separated. As the larger drop catches up to
the smaller one, the drops will either collide and coalesce, or even-
tually separate. The collision efficiency E12 is determined through
the critical horizontal offset d�1 demarcating trajectories which
lead to coalescence and separation. In thermocapillary motion
without attractive forces (Zhang and Davis, 1992),

E12 ¼
d�1

a1 þ a2

� �2

¼ exp �2
Z 1

2

MA � LA

sLA
ds

� �
: ð11Þ

When molecular forces are included in Marangoni-induced mo-
tion, there is no longer a closed-form solution for E12. Rather, the
critical impact parameter can be found by integrating the differen-
tial form of Eq. (7) backwards, as described in Zhang and Davis
(1991, 1992), along the limiting trajectory to a position s ¼ sf and
h ¼ hf at which van der Waals forces are negligible. The collision
efficiency is then

E12 ¼
1
4
ðsf sin hf Þ2 exp �2

Z 1

2

MA � LA

sLA
ds

� �
: ð12Þ
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Fig. 2. The axisymmetric mobility function LA versus the dimensionless gap
between the drops at k ¼ 0:5; l̂ ¼ 0:1 and k̂ ¼ 10. Results are shown for
A ¼ 0;10;100 and 1000.

420 M.A. Rother / International Journal of Multiphase Flow 35 (2009) 417–426
To demonstrate the importance of incorporating the presence of
incompressible surfactant in coalescence calculations, we perform
population dynamics simulations for dilute homogeneous isotropic
suspensions. Results for both clean and contaminated spherical
drops are compared for a model system of ethyl salicylate (ES) drop
in diethylene glycol (DEG). The method employed is that of Davis
and co-workers (Rogers and Davis, 1990; Wang and Davis, 1993).
We present here only the essential details. The discretized form
of the stochastic collection equation is

dni

dt
¼ 1

2

Xi�1

j¼1

Jjði�jÞ �
XN

j¼1

Jij; i ¼ 1;2; . . . N; ð13Þ

where Jij is the collision rate per unit volume between drops with
radii ai and aj, and N is the total number of size categories.

The initial distribution is assumed to be a normal distribution
on a number basis with an initial total number of drops, n0, so that
the number of drops whose radii are within the interval a� 1

2 da is
given by n0hnðaÞda, where

hnðaÞ ¼
e�

1
2ð

a�a0
rs
Þ2ffiffiffiffiffiffi

2p
p

rs

: ð14Þ

Here, a0 is the number-averaged radius and rs is the standard
deviation.

The method of non-dimensionalization used here is that of
Wang and Davis (1993). All lengths are scaled with a0;ni is scaled
with n0, and time is scaled with the time scale tm ¼ 4ao=ð3/oV1o Þ
for Marangoni-induced motion, with /0 being the volume fraction
of the dispersed phase and V10 being the velocity of a drop with ra-
dius a0, Eq. (6). For Marangoni-induced motion, with hats on the
dimensionless variables, Eq. (13) becomes

dn̂i

dt̂
¼ k

1
2

Xi�1

j¼1

n̂in̂i�jðâi þ âi�jÞ2ðâi � âi�jÞEiði�jÞ �
XN

j¼1

n̂in̂jðâi þ âjÞ2ðâi � âjÞEij

 !
;

i¼ 1;2; . . . N; ð15Þ

where Eij are collision efficiencies and k ¼ 4
3 pa3

ono=/o. Note that k is
specified by

1
k
¼
Z 1

0

â3e
�1

2
â�1
r̂s

� �2

ffiffiffiffiffiffi
2p
p

r̂s

dâ: ð16Þ

Thus, in dimensionless form, the population dynamics equation
is entirely determined by setting the value of the dimensionless
standard deviation, r̂s. The collision efficiencies will still depend
on the specifics of the system, e.g. the viscosity ratio ðl̂Þ, retarda-
tion parameter ðAÞ, and the interaction parameter ðQ 12Þ.

It is customary (Berry, 1967) to use a logarithmic discretization
in drop radii and trace the evolution of the drop size distribution in
terms of a volume density function, f ðln aÞ. The integral of this
function is a conserved quantity and equals the volume fraction
of the dispersed phase:

Z þ1

�1
f ðln aÞd ln a ¼ /0: ð17Þ

For all results shown, the volume is conserved to within 0.05%.
In addition, results are often reported in terms of the average ra-
dius, hai. This average radius is the radius of the drop having the
mass-averaged drop volume, hVV i. In discretized form,

hVV i ¼
XN

i¼1

V2
V ;ini

,XN

i¼1

VV ;ini; ð18Þ

where VV ;i ¼ 4
3 pa3

i .
3. Results and discussion

Fig. 2 contains typical results for the mobility function LA paral-
lel to the drops’ line of centers as a function of the dimensionless
gap n ¼ s� 2 at various values of the retardation parameter A.
Zhang and Davis (1992), based on the work of Keh and Chen
(1990), previously observed that, for clean drops with a thermal
conductivity ratio greater than one, a thermocapillary repulsive ef-
fect may occur at small gaps. As a result, the mobility function LA

becomes less then zero, the smaller drop moves faster than the lar-
ger one, and the collision efficiency goes to zero in the absence of
attractive molecular forces. In Fig. 2 with A ¼ 0; LA does not quite
reach zero with a minimum of LA � 0:0057 at n ¼ 0:0001 for
k̂ ¼ 10; l̂ ¼ 0:1 and k ¼ 0:5. However, if the viscosity ratio were in-
creased, the mobility function would dip slightly below zero.

When the presence of incompressible surfactant is included in
the model, the thermocapillary repulsive effect becomes much
more pronounced. At A ¼ 1000; LA attains a minimum of �180 at
n ¼ 0:16, about three orders of magnitude more negative than
what is generally observed for highly conductive clean drops. This
amplification of thermocapillary repulsion is due in part to the rel-
ative magnitude of the isolated drop velocities. For clean drops, the
ratio of the isolated smaller drop velocity to that of the larger drop
is k, so that for the parameters in Fig. 2, the larger drop moves
twice as fast as the smaller drop when far away from it. However,
for A ¼ 1000, the isolated smaller and larger drop velocities scaled
by bjrT1ja2=le are 0.00737 and 0.00739, respectively. That is,
even when well separated, the smaller drop is moving at 99.8%
of the larger drop speed. Consequently, when the disturbance to
the temperature field due to the presence of the larger drop is felt
by the smaller one as the drops move into close approach, the ef-
fect on the smaller drop velocity is much greater relative to the
case of uncontaminated drops.

Incompressible surfactant also permits LA to be negative, even
for thermal conductivity ratios less than one. In fact, except for
k̂ = 0, we have observed that at some value of A, the mobility func-
tion along the line of centers becomes zero at very small gaps.
Again, this result is partly explainable in terms of amplification
of what is observed for clean drops. The mobility function tends to-
ward zero for clean drops at small gaps, but with nearly equal
velocities at moderate values of A, hydrodynamic interactions lead
to negative values of A as n! 0. The implications of these results
on collision efficiencies are discussed below.

To make clear the physical significance of negative LA at moder-
ate gaps, Fig. 3 is presented, containing images from an axisym-
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metric thermocapillary interaction of two drops with the same
parameters as Fig. 2 and A ¼ 1000. In Fig. 3, the temperature gradi-
ent is oriented upward, so that drop motion is upward, with the
smaller drop above the larger one and an initial center-to-center
separation of two larger drop radii. In a typical thermocapillary
interaction of clean drops, even highly conducting ones, the larger
drop would move faster than the smaller one at t ¼ 0 and begin to
catch up to the smaller one. If the drops were highly conducting,
there would be a small gap at which LA ¼ 0. The drops would
slowly approach this separation, beyond which there would be
no further relative motion. For smaller values of k̂, the larger drop
would catch up to the smaller one, and coalescence would occur.

However, for A ¼ 1000, as in Fig. 3, there is a strong thermocap-
illary repulsive effect even at a gap of 0:5a2, so that the smaller
drop moves rapidly away from the larger one and the center-to-
center separation increases to four larger drop radii at t ¼ 29.
(Time is scaled with the average drop radius divided by the iso-
lated larger drop velocity, Eq. (6).) As the separation increases,
the mobility function LA from Fig. 2 increases toward zero, and rel-
ative motion slows. At a dimensionless time of 705, the center-to-
center distance has increased to eight larger drop radii. We note
that Rother (2007) observed the possibility of the smaller drop
moving faster than the larger one at the end of a trajectory in the
non-linear case ðK–0Þ, but thermocapillary repulsion and initial
significant faster motion of the smaller drop were not considered
there. In this context, it is also appropriate to mention experiments
performed on the NASA Space Shuttle involving a pair of interact-
ing drops in the absence of surfactant at Marangoni numbers of
Oð10—100Þ (Balasubramaniam et al., 1996). In the experiments, a
smaller leading drop moved faster than a larger trailing one, indi-
cating that surfactant effects are not necessary to produce signifi-
cant repulsion when the convective transport of energy is not
negligible.

In Fig. 4, typical results for the mobility function MA perpendic-
ular to the drops’ line of centers are shown. As in the case of LA,
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there is an amplification of trends observed for clean drops.
Extracting the mobility function from Anderson (1985), Zhang
and Davis (1992) found that MA was greater than one for clean
drops in close approach in thermocapillary motion. For moderate
values of A, Fig. 3 shows that MA can approach values Oð100Þ or
greater. The far-field solution to Oð1=s8Þ is shown in Fig. 4 as
dashed lines for comparison to the numerical solution. (See Appen-
dix C for details.) Similar to what has been observed for clean drops
(Rother and Davis, 1999), the far-field solution is good even at ex-
tremely small gaps, provided the viscosity ratio is Oð10Þ or smaller.
The same caveat holds for drops with incompressible surfactant
with the additional constraint that A should be Oð10Þ or smaller,
as well.

With mobility functions LA and MA determined, it is possible to
calculate drop trajectories. To investigate the limits of the incom-
pressible surfactant model and provide a check on the code, com-
parison of the minimum separation as a function of the surface
Péclet number is made in Fig. 5 between the current results and
those of Rother (2007) for deformable drops and solution of the full
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Fig. 5. Comparison of the minimum drop separation vs. the surface Péclet number
between the incompressible surfactant model and solution of the full convective-
diffusion equation, including deformation (Rother, 2007). The full solution results
were calculated at k ¼ 0:7; k̂ ¼ l̂ ¼ 1; Ca� ¼ 0:02 and E ¼ 0:5. The initial dimen-
sionless horizontal and vertical offsets are Dx0=a2 ¼ 1:5 and Dz0=a2 ¼ 3:0, respec-
tively. Insets indicating iso-concentration lines for the surfactant profile are shown
for Pes ¼ 5;20 and 100 from solution of the full time-dependent convective
diffusion equation (Rother, 2007).
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time-dependent convective-diffusion equation. Trajectories from
Rother (2007) were calculated at k ¼ 0:7; k̂ ¼ l̂ ¼ 1, elasticity
E ¼ 0:5 and modified capillary number Ca� ¼ 0:02. Corresponding
trajectories for the incompressible surfactant model were then
found at the appropriate value of the retardation parameter for
each Pes.

From Fig. 5, there is good agreement in the dimensionless min-
imum separation at surface Péclet numbers between 1 and 10. The
small difference in hmin=a2 at small Pes is actually due to the limited
deformation which occurs in Rother (2007), as can be demon-
strated from comparison between the two models for clean drops
ðA ¼ 0Þ. Beyond Pes ¼ 10, the incompressible model diverges rap-
idly from the full model and fails to capture the non-monotonic
behavior in the minimum separation due to non-linearities. At sur-
face Péclet numbers of 5, 20 and 100, insets are shown from Rother
(2007) close to the minimum separation. The insets indicate that as
the surface Péclet number increases, the angle h between vertical
and the drops’ line of centers at which the drops come into closest
approach decreases from p=2 to about 1.4 radians, where the drops
are moving upward. In the linear, incompressible surfactant model,
drop trajectories are symmetric and closest approach always oc-
curs at h ¼ p=2 radians.

Collision efficiencies are shown in Fig. 6 as a function of the
retardation parameter A at various values of k̂ and l̂ at a size ratio
of k ¼ 0:5 in the absence of attractive molecular forces. It should be
noted that the size ratio k ¼ 0:5, used in Figs. 6–8, is chosen as a
representative value and that similar trends occur at different size
ratios. The consequences of the mobility function LA becoming neg-
ative are apparent in Fig. 6, where the collision efficiency E12 be-
comes identically zero at finite values of A. In fact, even at the
relatively small thermal conductivity ratio of k̂ ¼ 0:04; E12 goes to
zero at A ¼ Oð10Þ. The value of A at which E12 ¼ 0 corresponds to
the point in the parameter space where LA becomes zero.

The only parameters we have found for which the collision effi-
ciency does not appear to go to zero at finite A involve drops with
thermal conductivity ratio k̂ ¼ 0, i.e. non-conducting drops. The
graph for bubbles ðk̂ ¼ l̂ ¼ 0Þ from Fig. 6 is continued in Fig. 7
up to A ¼ 10; 000 with inclusion of curves for viscosity ratios be-
tween l̂ ¼ 0 and 1000. In the absence of van der Waals forces it ap-
pears that E12 ! 0 as A!1. Calculational difficulties are
encountered at larger values of A, because the drop velocities and
their difference become so small that round-off error occurs in cal-
culating the mobility functions. Bubbles have the largest mobility
function LA, i.e. weakest hydrodynamic interactions, of all drops,
A

E 12

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

μ = 0, k = 0

3,3

^ ^

0.3,0.3

0.1,0.1

0.04,0.04

1,1

Fig. 6. The collision efficiency E12 as a function of the retardation parameter A for
k ¼ 0:5 and various values of the viscosity ratio l̂ and thermal conductivity ratio k̂
for thermocapillary motion without interparticle forces.
and their interaction even for clean drops is unusual in that
equal-sized bubbles move with same velocity regardless of their
separation (Meyyappan et al., 1983; Anderson, 1985).

In Fig. 7, the collision efficiency never reaches zero, even at high
viscosity ratios and large A. While E12 appears to be tending toward
zero for l̂ ¼ 100 and 1000, additional calculations beyond those
shown in Fig. 7 indicate a minimum in the collision efficiency oc-
curs but not a zero value. Another unusual feature is that the curve
for l̂ ¼ 1000 crosses those for l̂ ¼ 15 and 100 near A ¼ 425. This
crossover takes place because the interface is nearly immobile at
l̂ ¼ 1000, so that the effect of surfactant is not felt until larger
retardation parameters. That is, there is a transition from a viscos-
ity-ratio-dominated regime to a retardation-dominated regime.

A significant factor may be that the rotational component of
velocity is independent of the retardation parameter A (see Appen-
dix B, Eq. (B-3)), which turned out to be partly responsible for some
behavior in buoyancy-driven motion of spherical drops with
incompressible surfactant (Rother and Davis, 2004). The impor-
tance of drop rotation was tested in these results numerically by
artificially changing the value of l̂ in only Eq. (B-3). It was ob-
served that if the value of l̂ in Eq. (B-3) was set to zero, the mini-
mum in E12 as a function of A disappeared. However, at a large
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value of artificial l̂ ¼ 1	 1020 in (B-3), the minimum was
accentuated.

The effect of unretarded van der Waals forces on the collision
efficiency is considered in Fig. 8. The cases of l̂ ¼ k̂ ¼ 0 and
l̂ ¼ k̂ ¼ 1 are taken as representative of bubbles and drops, respec-
tively, following Subramanian and Balasubramaniam (2001). As
the interaction parameter Q12 (Eq. (10)) increases, molecular forces
decrease and the collision efficiency begins to approach its value in
the absence of attractive forces. For bubbles, as in Fig. 7, E12 ap-
proaches zero only as both the retardation parameter and interac-
tion parameter tend toward infinity. For drops, where surfactant
effects are much more pronounced, when the retardation parame-
ter is Oð10Þ or greater, the collision efficiency is Oð0:1Þ only when
van der Waals forces are very strong (Q 12 ¼ Oð100Þ or smaller).

A model system of ethyl salicylate (ES) drops in diethylene gly-
col (DEG) is the subject of Figs. 9–11. The ES/DEG system has been
used in experiments (Barton and Subramanian, 1989) and theoret-
ical analysis (e.g. Zhang and Davis, 1992; Rother and Davis, 1999).
As provided by Barton and Subramanian (1989), relevant physical
properties of this system at 20 �C include k̂ ¼
0:7; l̂ ¼ 0:1;le ¼ 0:35 g=cm s;r0 ¼ 1:9 dyn=cm;b ¼ 0:016 erg=cm2

K;qe ¼ 1:1 g=cm3 and DT ¼ 0:83 cm2=s, where DT is the thermal
diffusivity of DEG. A typical value of the Hamaker constant
AH ¼ 5	 10�14 erg is used in the calculations (Davis, 1984). While
a wide range of temperature gradients is found in Barton and Subr-
amanian (1989), in Figs. 9–11 an intermediate value of
rT1 ¼ 24 K=cm is employed (Zhang and Davis, 1992).

From Eq. (5), the retardation parameter A is proportional to the
larger drop radius. Following the procedure of Rother and Davis
(2004) for incompressible surfactant in the buoyancy-driven case,
the collision efficiencies in Fig. 9 were determined based on the
retardation parameter being equal to a constant multiplied by
the larger drop radius in lm. The implications of this method for
the model can be checked if one assumes the surface diffusivity
is the same order of magnitude as the bulk diffusivity (Hudson
et al., 2003; Shen et al., 2002) and that the bulk surfactant
diffusivity is Oð10�10Þ to Oð10�9Þm2=s (Shen et al., 2002). With
T0 � 293 K; R ¼ 8:3145 J=mol K;Ds ¼ 10�9 m2=s and le from above,
the surfactant surface concentration C0 is 1.4 	10�9 mol=m2 if the
constant of proportionality between A and a2 in lm is 0.1, for
example. In other words, for the values of A in Fig. 9, the surfactant
surface concentration must be dilute, the same restriction used to
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linearize the problem when requiring the parameter K ¼ RC0=b be
small.

In addition to the constraint that the surfactant concentration
be dilute, the model employed here requires that inertia, deforma-



424 M.A. Rother / International Journal of Multiphase Flow 35 (2009) 417–426
tion, thermal convection and Brownian motion be negligible, as
discussed in Section 2. In their analysis of the ES/DEG system for
clean drops in thermocapillary motion, Zhang and Davis (1992)
showed that the limiting conditions are that the drops must be lar-
ger than 2–3 lm in diameter to avoid significant Brownian motion
and that they must be less than 50–60 lm in diameter to remain
spherical. For deformation to be negligible, Zhang and Davis
(1992) required a modified form of the capillary number Ca to be
much less than unity:

Ca ¼ leV ð0Þ2

r0

a2

h0
; ð19Þ

where V ð0Þ2 is found from Eq. (6) with A ¼ 0 and the critical separa-
tion h0 is determined by balancing attractive and viscous forces. A
similar range of drop diameters holds for drops with incompressible
surfactant.

In Fig. 9, then, collision efficiencies for an ES/DEG system are
presented both with and without van der Waals forces as a func-
tion of the drop radius. The results for A ¼ 0 reproduce those of
Zhang and Davis (1991), while the effect of incompressible surfac-
tant is assessed in the remaining curves. From Eq. (10), the interac-
tion parameter Q12 / a3

2 for clean drops and between a2
2 and a3

2 for
contaminated drops, since A is proportional to the larger drop
radius. As a2 increases, the importance of van der Waals forces
decreases, so that the collision efficiency values with attractive
forces approach those without such forces at large a2. In the ab-
sence of molecular attraction, the collision efficiency vanishes at
a finite value of a2, while E12 approaches zero asymptotically with
finite Q 12.

Results from population dynamics simulations, incorporating
the collision efficiency data from the ES/DEG system in Fig. 9, are
shown in Figs. 10 and 11, where the volume fraction of the dis-
persed phase is /0 = 0.05. Although collision efficiencies are gener-
ally calculated including van der Waals forces, population dynamic
simulations are often performed with collision efficiencies ob-
tained in their absence (e.g. Zhang et al., 1993). This simplification
is made based on the relative insignificance of van der Waals forces
at larger drop sizes, as in Fig. 9. In Fig. 10, the evolution of the drop-
size distribution is followed with van der Waals forces excluded
(Fig. 10a) and included (Fig. 10b). In both Fig. 10a and b, solid lines
mark results for a dispersion with incompressible surfactant
(A ¼ 0:25a2, where a2 is in lm), while dashed lines are used for a
dispersion of clean drops. The time-scale tm ¼ 141 s used in
Fig. 10 is determined from drops in the presence of incompressible
surfactant, and the initial distribution is relatively narrow, being
normal with an initial number-averaged radius of 8 lm and a
dimensionless standard deviation r̂s ¼ 0:1.

Comparing the results for clean drops in Fig. 10a and b without
van der Waals forces, the effect of neglecting molecular forces is
seen to be negligible. The change in the drop distribution is very ra-
pid, because both the collision efficiency and the characteristic
drop velocity are larger for clean drops than contaminated ones.
However, when incompressible surfactant is considered, the differ-
ence between including and neglecting van der Waals forces is
more significant. A narrower distribution at a smaller drop radius
occurs in Fig. 10a, because the collision efficiency becomes identi-
cally zero at a smaller size without molecular forces than in the
case of the gradual approach to zero in the presence of attractive
forces.

The volume-averaged drop radius in the dispersion as a func-
tion of time is shown in Fig. 11. Again, for clean drops, the results
are nearly identical with and without van der Waals forces. In the
presence of incompressible surfactant, drop growth is much
slower, and the results diverge near t ¼ 1000 s between models
including and neglecting molecular attraction. Intermediate
growth of the average drop radius would occur if the constant of
proportionality between A and a2 was less than 0.25, i.e. the surfac-
tant surface concentration was more dilute. Physically, one might
note that significant coalescence and growth in the average drop
radius begins to take place at t ¼ 100 s or 1.7 min for a dispersion
of clean drops. However, with incompressible surfactant, there has
been relatively little coalescence or change in hai even at t ¼ 1000 s
or 17 min. That is, incompressible surfactant arrests drop motion,
inhibits coalescence and could perhaps be used to control the
properties of a homogeneous dispersion of drops interacting due
to an applied temperature gradient through control of its
concentration.
4. Concluding remarks

A trajectory analysis has been used to determine collision effi-
ciencies for two spherical drops interacting in thermocapillary
motion covered with incompressible surfactant in the limit of
negligible inertia and thermal convection. The problem has been
linearized by assuming dilute surfactant surface concentration,
and the elasticity and surface Péclet number have been com-
bined into a single retardation parameter A. Mobility functions
parallel and normal to the drops’ line of centers have been cal-
culated by bispherical coordinate and multipole solutions,
respectively. Interestingly, the mobility function LA along the
drops’ line of centers may become very negative at relatively
large gaps, resulting in the smaller drop moving faster than the
larger one over significant distances and zero collision efficien-
cies in the absence of van der Waals forces over a wide range
of parameters. Only bubbles and drops with k̂ ¼ 0 appear to have
non-zero collision efficiencies at large values of the retardation
parameter A. For a particular physical system of ethyl salicylate
drops in diethylene glycol, the collision efficiency, including
incompressible surfactant and van der Waals forces, tends to
zero at values of the larger drop radius on the order of 10–
100 lm. Population dynamics simulations indicate quantitatively
the inhibiting effect of incompressible surfactant on drop motion,
coalescence and growth. It is noteworthy that small deformation,
which becomes important at slightly larger drop sizes than con-
sidered here, also inhibits coalescence (Rother and Davis, 1999).
As a result, for a wide range of parameters drops beyond a cer-
tain size will virtually never coalesce in an applied temperature
gradient, as long as inertia and thermal convection remain
negligible.
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Appendix A

Some details of the bispherical coordinate solution for the
mobility function LA are provided here. The methodology has been
well described elsewhere, e.g. Zinchenko (1980), Ramirez et al.
(2000), so only final equations will be provided. For the bispherical
coordinate solution parallel to the drops’ line of centers, a relative
stream function is used as in Rother and Davis (2004) and Ramirez
et al. (2000). The temperature field is unaffected by the presence of
surfactant, and solution for the coefficients An and Bn from Rother
and Davis (1999) is the same here. The g-dependence of the hydro-
dynamic stream function for the flow field in the external medium
is given by
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A system of two algebraic and two difference equations results
for the coefficients En; Fn;Gn, and Hn, where Eqs. (A-2) and (A-3) are
unchanged from Rother and Davis (2004):
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þ l̂ n� 1
sinhg1

�
ðn� 3=2ÞEn�1eðn�3=2Þðg2�g1Þ � ðn� 3=2ÞFn�1

�
þðnþ 1=2ÞGn�1eðnþ1=2Þðg2�g1Þ � ðnþ 1=2ÞHn�1

þV2
ðnþ 1=2Þeðnþ1=2Þg2
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2n� 3
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sinh g1
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2n� 1

� ��
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sinh g1

�
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þðnþ 5=2ÞGnþ1eðnþ5=2Þðg2�g1Þ � ðnþ 5=2ÞHnþ1
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sinh g1
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sinh g1
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� �� �

þkA
�
ðn� 1=2ÞEneðn�1=2Þðg2�g1Þ � ðn� 1=2ÞFn
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2n� 1

� ��
; ðA-5Þ
The final condition on the drops is that they are force free:

F1 ¼ 0 ¼
X1
n¼1

Ene�ðn�1=2Þg1 þ Gne�ðnþ3=2Þg1
	 


; ðA-6AÞ

F2 ¼ 0 ¼
X1
n¼1

Fneðn�1=2Þg2 þ Hneðnþ3=2Þg2
	 


: ðA-6BÞ

Solution of the system Eqs. (A-2)–(A-6) provides the drop veloc-
ities Vi, and the mobility function LA can then be calculated.
Appendix B

The process of determining the coefficients for the unknown
velocity fields in Lamb’s solution of the Stokes equations can essen-
tially be thought of as combining the results for motion of clean
drops due to an applied temperature gradient (Rother and Davis,
1999) and the presence of incompressible surfactant (Rother and
Davis, 2004), although the derivation is more complex. The result-
ing four equations applied to motion normal to the drops’ line of
centers are
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Ai
�ðnþ1Þ ¼ �

nð2n� 1Þð2nþ 1Þ
ð1þ nð1þ k̂ÞÞðð2nþ 1Þð1þ l̂Þ þ qiAÞ

a2n
i ðdn;1 þ Di

nÞ

� nð2n� 1Þ
ðnþ 1Þ ð2nþ 1Þð1þ l̂Þ þ qiA½ 


	 qiAþ ð2nþ 1Þl̂
2

a2nþ1
i Ai

n þ ð2nþ 1ÞðqiAþ 2
�

þl̂ð2nþ 1ÞÞa2n�1
i Bi

n

�
; ðB-1Þ

Bi
�ðnþ1Þ ¼ �

nð2nþ 1Þ
2ð1þ nð1þ k̂ÞÞðð2nþ 1Þð1þ l̂Þ þ qiAÞ

a2nþ2
i ðdn;1 þ Di

nÞ

þ n
2ðnþ 1Þ ð2nþ 1Þð1þ l̂Þ þ qiA½ 


	 ð2nþ 1Þ 2� qiA� l̂ð2nþ 1Þ½ 

2ð2nþ 3Þ a2nþ3

i Ai
n

�

�ð2n� 1Þ qiAþ l̂ð2nþ 1Þ½ 
a2nþ1
i Bi

n

�
; ðB-2Þ

Ci
�ðnþ1Þ ¼

ðn� 1Þð1� l̂Þ
ðnþ 2þ l̂ðn� 1ÞÞa

2nþ1
i Ci

n; ðB-3Þ

Di
�ðnþ1Þ ¼

nð1� k̂Þ
ð1þ nð1þ k̂ÞÞ

a2nþ1
i ðdn;1 þ Di

nÞ; ðB-4Þ

where i is 1 or 2 for the smaller or larger drop, respectively, ai ¼ ai=‘

with ‘ being the dimensional center-to-center distance between the
drops, and qi is k for drop 1 and 1 for drop 2.

Interestingly, as seen in the derivation in Ramirez et al. (2000),
the coefficients for the rotational component of the velocity field gi-
ven in Eq. (B-3) are independent of the retardation parameter A. In
addition, the coefficients for the temperature field Di

�ðnþ1Þ in Eq. (B-
4) are also unchanged with the addition of surfactant. The coeffi-
cients for re-expansion are the same as found in Rother and Davis
(1999) and are not reproduced here. To avoid machine zeroes or
overflow, the calculational procedure of Rother and Davis (1999) is
employed. As in Ramirez et al. (2000), the coefficients Bi

1 are relative
to the velocity of drop i, and the mobility function MA can be found
from the drop velocities Vi once convergence is achieved in the
iterations.

Appendix C

The far-field approximation used for comparison with the
numerical results in Fig. 4 is presented here. Expressions good to
Oð1=s6Þ are given for LA and to Oð1=s8Þ for MA. A more accurate
expression is given for MA because it is more useful at smaller gaps.
The method of reflections is employed to generate the equations by
following the multipole solution from Appendix B to the desired
accuracy.

LAðsÞ ¼ 1� 8C1
1
s3 þ O

1
s6

� �
; ðC-1Þ

MAðsÞ ¼ 1þ 4C1
1
s3 þ 32C2

1
s6 þ O

1
s8

� �
; ðC-2Þ

where

C1 ¼ 2
1� k̂

k̂þ 2

 !
k3

3l̂þ 2þ A
� k

3l̂þ 2þ kA

 !"

þ 1
3l̂þ 2þ A

� k4

3l̂þ 2þ kA

#
1

f1ð1þ kÞ3
; ðC-3AÞ

C2 ¼ 2
ð1� k̂Þ
ð2þ k̂Þ

þ 1

 !
ð1� k̂Þ
ð2þ k̂Þ

k3

ð1þ kÞ6
; ðC-3BÞ
f1 ¼
1

3l̂þ 2þ A
� k

3l̂þ 2þ kA
: ðC-3CÞ

Unlike the case of clean drops (Anderson, 1985; Zhang and Da-
vis, 1992), there is a weak dependence on l̂ for finite A in the
Oð1=s3Þ correction. Interestingly, the Oð1=s6Þ correction for MA is
identical to that for clean drops and is independent of l̂ and A.
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